Rainbow 3-term Arithmetic Progressions
نویسندگان
چکیده
Consider a coloring of {1, 2, . . . , n} in 3 colors, where n ≡ 0 (mod 3). If all the color classes have the same cardinality, then there is a 3-term arithmetic progression whose elements are colored in distinct colors. This rainbow variant of van der Waerden’s theorem proves the conjecture of the second author.
منابع مشابه
On rainbow 4-term arithmetic progressions
{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi'{c} and Radoiv{c}i'{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...
متن کاملRainbow Arithmetic Progressions and Anti-Ramsey Results
The van der Waerden theorem in Ramsey theory states that, for every k and t and sufficiently large N, every k-colouring of [N] contains a monochromatic arithmetic progression of length t. Motivated by this result, Radoičić conjectured that every equinumerous 3-colouring of [3n] contains a 3-term rainbow arithmetic progression, i.e., an arithmetic progression whose terms are coloured with distin...
متن کاملRainbow Arithmetic Progressions
In this paper, we investigate the anti-Ramsey (more precisely, anti-van der Waerden) properties of arithmetic progressions. For positive integers n and k, the expression aw([n], k) denotes the smallest number of colors with which the integers {1, . . . , n} can be colored and still guarantee there is a rainbow arithmetic progression of length k. We establish that aw([n], 3) = Θ(log n) and aw([n...
متن کاملOn Rainbow Arithmetic Progressions
Consider natural numbers {1, · · · , n} colored in three colors. We prove that if each color appears on at least (n + 4)/6 numbers then there is a three-term arithmetic progression whose elements are colored in distinct colors. This variation on the theme of Van der Waerden’s theorem proves the conjecture of Jungić et al.
متن کاملArithmetic Progressions on Conics.
In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We als...
متن کامل